9,757 research outputs found

    Stripe phases in high-temperature superconductors

    Full text link
    Stripe phases are predicted and observed to occur in a class of strongly-correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representative. The existence of stripe correlations necessitates the development of new principles for describing charge transport, and especially superconductivity, in these materials.Comment: 5 pp, 1 color eps fig., to appear as a Perspective in Proc. Natl. Acad. Sci. US

    Theory of doped Mott insulators: duality between pairing and magnetism

    Full text link
    By bosonizing the electronic t-J model exactly on any two-dimensional (2D) lattices, and integrating out the gauge fluctuations combined to slave particles beyond mean fields, we get a theory in terms of physical Cooper pair and spin condensates. In the sense of mutual Berry phase they turns out to be dual to each other. The mutual-duality is the missing key in the resonant-valance-bond idea\cite{rvb} to work as a paradigm of doped 2D Mott insulators. We argue that essential aspects of high-TcT_c phenomenology find natural solutions in the theory. We also provide interesting predictions for systems on hexagonal lattices.Comment: 4 pages, no figures, Submitted to Phys. Rev. Let

    Exact Results for 1D Kondo Lattice from Bosonization

    Full text link
    We find a solvable limit to the problem of the 1D electron gas interacting with a lattice of Kondo scattering centers. In this limit, we present exact results for the problems of incommensurate filling, commensurate filling, impurity vacancy states, and the commensurate-incommensurate transition.Comment: 4 pages, two columns, Latex fil

    Sea surface velocities from visible and infrared multispectral atmospheric mapping sensor imagery

    Get PDF
    High resolution (100 m), sequential Multispectral Atmospheric Mapping Sensor (MAMS) images were used in a study to calculate advective surface velocities using the Maximum Cross Correlation (MCC) technique. Radiance and brightness temperature gradient magnitude images were formed from visible (0.48 microns) and infrared (11.12 microns) image pairs, respectively, of Chandeleur Sound, which is a shallow body of water northeast of the Mississippi delta, at 145546 GMT and 170701 GMT on 30 Mar. 1989. The gradient magnitude images enhanced the surface water feature boundaries, and a lower cutoff on the gradient magnitudes calculated allowed the undesirable sunglare and backscatter gradients in the visible images, and the water vapor absorption gradients in the infrared images, to be reduced in strength. Requiring high (greater than 0.4) maximum cross correlation coefficients and spatial coherence of the vector field aided in the selection of an optimal template size of 10 x 10 pixels (first image) and search limit of 20 pixels (second image) to use in the MCC technique. Use of these optimum input parameters to the MCC algorithm, and high correlation and spatial coherence filtering of the resulting velocity field from the MCC calculation yielded a clustered velocity distribution over the visible and infrared gradient images. The velocity field calculated from the visible gradient image pair agreed well with a subjective analysis of the motion, but the velocity field from the infrared gradient image pair did not. This was attributed to the changing shapes of the gradient features, their nonuniqueness, and large displacements relative to the mean distance between them. These problems implied a lower repeat time for the imagery was needed in order to improve the velocity field derived from gradient imagery. Suggestions are given for optimizing the repeat time of sequential imagery when using the MCC method for motion studies. Applying the MCC method to the infrared brightness temperature imagery yielded a velocity field which did agree with the subjective analysis of the motion and that derived from the visible gradient imagery. Differences between the visible and infrared derived velocities were 14.9 cm/s in speed and 56.7 degrees in direction. Both of these velocity fields also agreed well with the motion expected from considerations of the ocean bottom topography and wind and tidal forcing in the study area during the 2.175 hour time interval
    • …
    corecore